Dry Sump. Pump it up!

I am pleased to bring you the 4th in a series on the technology of our 1350 engine.

Efficiency. The purpose of dry sumping is efficiency: Put enough oil in the right places to lubricate and cool moving components, but not so much as to produce drag. Then, more power comes out.

The term, “dry sump,” simply refers to scavenging the oil from the lowest point (sump) of an engine – making it “dry.” Except, it’s never really dry. Oil goes almost everywhere and wants to collect wherever there is a low spot. Wherever oil gathers near moving parts, there is not only lubrication, but also risk of drag and even damage.

No tranquility. The oil doesn’t pump gently to the valve train or rod bearings, lubricate and peacefully trickle back down, to make the rounds again. It’s violent in there: Oil goes “weightless” and smashes down when a boat launches and lands. It splashes with every wave impact. It wants to pile on one side, when you round a turn marker. Just think about how your body moves around at speed – and you’re not ducking under a spinning crankshaft! Read more

Share Share

Dyno Mighty!

We have an amazing dynamometer laboratory at Racing. The lab is how we know you’re getting the performance and durability you expect. It is independently certified to International Standards Organization (ISO) requirements. Each day, our dynos are put to work: verifying production engine output (video below), validating components, improving quality, reducing emissions or developing power. Although a dyno is helpful for production consistency, it’s indispensable for development. Our engineers and technicians have logged hundreds of thousands of hours conducting dyno testing. They’re pretty good at it.

Moreover, ours is the only lab in the world that can certify exhaust gas emissions on spark-ignited engines over 1,000 hp. Erik Christiansen, our Engineering Director, searched the world to find someone to do emissions testing for us. No one could, so we built our own capability. We are making engines both cleaner and more fuel efficient. We understand dyno processes. Read more

Share Share

Racing Blue and Nor-Tech, Too!

Jon Steiner (left) positions finger followers over the valve stems. Mike Critchley installs the closed cooling reservoirs.
Mike and Jon install propulsion control electronics and harness (left foreground). Doug Peterson works on two more blocks (center background) for Cigarette. A third pair for MTI are fresh off the dyno and good to go (right background).

The first pair of color optioned 1350s are going together for a special Nor-Tech customer. This set is Racing Blue metallic with Super Silver manifolds. They scheduled to be on our dynos before Thanksgiving. They’re matched with Racing Blue M8 drives. The transom assemblies are complete. We started assembling the drives today (November 18).

I think the colors look great here in the shop. That combination should be absolutely dazzling in the sunshine of Ft. Myers!

Share Share

Sterndrive Losses? Less Than You Think!

Tremendous effort goes into good boat set-up. My conversations about set-up too often turn to power consumed by a drive train,or generated by an engine, and always… propellers. The goal is efficiency – accepting some sacrifice for boat control. Really, your goal is the euphoric joy and adrenalin rush of high performance boating! My goal is to help you get there.

Mercury Racing’s test rig for measuring parasitic losses in drives and transmissions.

Here, I’ll focus on drives. (We’ll cover engine power and props later.) Between engine crankshaft (drive input) and prop shaft (drive output), basic functions are required: gear reduction (so props are efficient); offset of input vs. output shafts (so they’re wet) and ability to change direction (steering and trim are good).

Mercury Racing employs several sterndrives for those functions. Each occupies a unique performance envelope and capacity. Unfortunately, each has parasitic losses: clutch slippage; gear efficiency; number and nature of gear interfaces; U-joint friction; bearing drag; gear oil (quantity, temperature, viscosity and lubricity); and oil windage/pumping losses. So here, drive by drive, are the results of those parasites… Read more

Share Share

Go Digital: Drive by Wire!

This is my third in a series about the technology we’ve applied in our new 1350 hp engine.

Computer. It all starts here: The embedded brain of Mercury Racing’s QC4v has ten times the power of our previous PC09 box. That computing power enables far more capability — not just fuel, spark and boost bypass maps — but fine waste gate modulation (learn more:  Big Fat Monster Torque) plus digital throttle, shift and start. Let’s look at DTS.

Read more

Share Share

Economy of Scale

The more we share (lean on) automotive technology and production volume, the more affordable our products can be. The marine industry is tiny compared to the car and truck world. The high performance market is even smaller. To put it in perspective, GM supplies almost the entire marine industry for a year – performance and mainstream – in one day’s engine production. We cannot (and need not) replicate millions of hours they’ve spent on R&D and manufacturing engineering. We pay for it, a little at a time, in the price we pay for components we buy.

Racing engine refresh cart shows the cam, valve train components, rods and pistons from a 2-valve engine.

General Motors’ big block V8 has served us well – with a relatively low cost platform and many performance parts.  The big block is the backbone of Mercury Racing’s sterndrive products (and most competitors, too). The geometry is simple. The mechanism has endured and evolved for 60 years! Read more

Share Share